Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study.
نویسندگان
چکیده
Coherent anti-Stokes Raman scattering (CARS) microscopy is combined with spontaneous Raman scattering microspectroscopy and second harmonic generation (SHG) microscopy to interrogate the molecular alignment in dry and hydrated cellulose fibers. Two types of cellulose were investigated: natural cellulose I in cotton fibers and regenerated cellulose II in rayon fibers. On the basis of the orientation of the methylene symmetric stretching vibration, the molecular alignment of cellulose microfibrils is found to be conserved on the micrometer scale. Whereas the molecular orientation in cotton shows modest variability along the fiber, the alignment of the cellulose units in rayon is highly consistent throughout the fiber. The ordered alignment is retained upon fiber hydration. Upon hydration of the cellulose fibers, an anisotropic electronic contribution is observed, which indicates an ordered incorporation of water molecules into the fiber structure. The third-order and second-order electronic polarizability of cellulose I are directed along the axis of the polyglucan chain. No second-order optical response is observed in cellulose II, supporting the antiparallel arrangement of the polyglucan chains in regenerated cellulose.
منابع مشابه
Investigation of Scalar Modulation Instability in the Presence of Raman Scattering in Photonic Crystal Fibers
In this paper, by including Raman scattering in the coupled-mode equations, the scalar modulation instability in photonic crystal fibers is investigated. The evolution of the pump, Stokes and anti-Stokes waves along the fiber as well as the conversion efficiency for two cases, with and without Raman effect, are studied. The effect of anti-Stokes seed and the pump depletion on the evolution of S...
متن کاملCoherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals
We demonstrate three-dimensional vibrational imaging of director structures in liquid crystals using coherent anti-Stokes Raman scattering sCARSd polarized microscopy. Spatial mapping of the structures is based on sensitivity of a polarized CARS signal to the orientation of anisotropic molecules in liquid crystals. As an example, we study structures in a smectic material and demonstrate that si...
متن کاملQuantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy.
Coherent anti-Stokes Raman scattering (CARS) microscopy is used to determine the distribution and concentration of selected compounds in intact human hair. By generating images based on ratiometric CARS contrast, quantitative concentration maps of both water and externally applied d-glycine are produced in the cortex of human hair fibers. Both water and d-glycine are found to homogeneously dist...
متن کاملCoherent anti-Stokes Raman scattering microscopy of human smooth muscle cells in bioengineered tissue scaffolds.
The integration of living, human smooth muscle cells in biosynthesized cellulose scaffolds was monitored by nonlinear microscopy toward contractile artificial blood vessels. Combined coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy was applied for studies of the cell interaction with the biopolymer network. CARS microscopy probing CH(2)-groups at 2845...
متن کاملDetecting lateral interfaces with focus-engineered coherent anti-Stokes Raman scattering microscopy
Focus-engineered coherent anti-Stokes Raman scattering (FE-CARS) microscopy is used to highlight the lateral interfaces between chemically distinct media. Interface highlighting is achieved by using a HG10 mode for the Stokes laser beam and a HG00 mode for the pump laser beam in the forward detection scheme. The spectral and the orientation dependence of FE-CARS are found to be in agreement wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 114 31 شماره
صفحات -
تاریخ انتشار 2010